Biosynthesis of Extracellular Polymeric Substances (EPS) and Its Role in Microbial Biofilm Formation

نویسندگان

  • K. Czaczyk
  • K. Myszka
چکیده

Microbial biofilm formed on abiotic surfaces is an important area of research because of the wide range of possible affects and the disinfectant resistance of the cells. The colonization of solid surfaces by microorganisms is a very complicated process that depends mostly on extracellular molecule production. The biosynthesis of EPS reflected not only the attachment and aggregation process but also provided an optimal environment for the exchange of genetic material between the cells. The comparative and comprehensive analysis of all documented data concerning EPS production can enable the development and effective control strategies for biofilms. In this review some of the basic concepts concerning the biosynthesis of EPS and potential function of these compounds in biofilm development were discussed. In the paper the positive and negative aspects of EPS production in the environment also were described.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bacterial extracellular polysaccharides involved in biofilm formation.

Extracellular polymeric substances (EPS) produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids and humic substances. EPS make up the intercellular space of microbial aggregates and form the structure and architecture of the biofilm matrix. The key functions of EPS comprise the mediation of the initial ...

متن کامل

The sinR Ortholog PGN_0088 Encodes a Transcriptional Regulator That Inhibits Polysaccharide Synthesis in Porphyromonas gingivalis ATCC 33277 Biofilms

Biofilm-forming cells are distinct from well characterized planktonic cells and aggregate in the extracellular matrix, the so-called extracellular polymeric substances (EPS). The sinR gene of Bacillus subtilis encodes a transcriptional regulator that is known to be involved in the biosynthesis of EPS in biofilms. Porphyromonas gingivalis inhabits the subgingival and extraradicular biofilm of hu...

متن کامل

Biodegradability of biofilm extracellular polymeric substances.

This study discovered that biofilm extracellular polymeric substances (EPS) are biodegradable by their own producers and by other microorganisms when they are starved. The study was performed in a comparative fashion to examine the biodegradability of biofilm EPS by the microorganisms from the original biofilm (its own producers) and from activated sludge (other microorganisms). Four distinctiv...

متن کامل

Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation

Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of...

متن کامل

Use of lectins to in situ visualize glycoconjugates of extracellular polymeric substances in acidophilic archaeal biofilms

Biofilm formation and the production of extracellular polymeric substances (EPS) by meso- and thermoacidophilic metal-oxidizing archaea on relevant substrates have been studied to a limited extent. In order to investigate glycoconjugates, a major part of the EPS, during biofilm formation/bioleaching by archaea on pyrite, a screening with 75 commercially available lectins by fluorescence lectin-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007